conjugacy.Rd
Sample from the posterior (conditional on all other parameters) in the conjugate setting.
conj_norm_mu(y, tau, mu0 = 0, tau0 = 0.001, ..., mult = 1, params.only = FALSE)
conj_mvnorm_mu(
y,
Q,
mu0 = NULL,
Q0 = diag(0.001, p),
...,
newQ = mult * Q0 + n * Q,
newQ.chol = gu_chol(newQ),
mult = 1,
params.only = FALSE
)
conj_matnorm_mu(
y,
V,
U = NULL,
mu0 = NULL,
Q0,
...,
newQ = V %x% U + Q0,
newQ.chol = gu_chol(newQ),
diag = FALSE,
zero = NULL,
params.only = FALSE
)
conj_lm_beta(
y,
X,
XtX = t(X) %*% X,
tau,
mu0 = NULL,
Q0,
...,
newQ = tau * XtX + Q0,
newQ.chol = gu_chol(newQ),
params.only = FALSE
)
conj_matlm_beta(
y,
X,
V,
U = NULL,
mu0 = NULL,
Q0,
...,
XtU = if (is.null(U)) t(X) else t(X) %*% U,
XtUX = XtU %*% X,
newQ = V %x% XtUX + Q0,
newQ.chol = gu_chol(newQ),
diag = FALSE,
zero = NULL,
params.only = FALSE
)
conj_norm_tau(y, mu, a0 = 0.001, b0 = 0.001, params.only = FALSE)
conj_mvnorm_Q(y, mu = NULL, V0, v0, V0_inv = chol_inv(V0), params.only = FALSE)
conj_matnorm_V(
y,
mu = NULL,
U = NULL,
V0,
v0,
...,
ytUy = t(ymu) %*% U %*% ymu,
V0_inv = chol_inv(V0),
params.only = FALSE
)
conj_lm_tau(
y,
X,
beta,
Xbeta = X %*% beta,
a0 = 0.001,
b0 = 0.001,
params.only = FALSE
)
conj_binom_p(k, n, a0 = 1, b0 = 1, params.only = FALSE)
conj_gamma_b(x, a, a0, b0, params.only = FALSE)
realizations from the distribution whose parameter is being drawn. For multivariate conjugacy, this is an n-by-p matrix
the prior mean of mu
or beta
. The default (NULL
) is the same as an appropriately-dimensioned
vector/matrix of all zeros, but a little faster.
Other arguments. Examples include verbose=
, take.chol=
, and
Rstruct=
.
An optional multiplier for the prior precision; useful in some cases
Should just a list of the updated parameters be returned?
the precision of the (multivariate) normal distribution from which y
comes
the prior precision of mu
.
the precision matrices for the matrix-normal distribution
If TRUE
, both V
and Q0
are assumed (but not confirmed!) to be diagonal,
which can speed up the Cholesky decomposition up to 100x. Default FALSE
.
A matrix of ones and zeros, the same size as the beta to sample. Zero indicates a structural zero in the beta.
In the event that this is specified, everything returned is of size sum(zero)
.
the data matrix on beta
pre-computed "shortcut" arguments for efficiency reasons
the mean of the normal distribution from which y
comes
the parameters (shape and rate) of the gamma distribution prior on tau
,
or the parameters (shape1 and shape2) of the beta distribution prior on p
.
the parameters (matrix and degrees of freedom) of the Wishart prior on Q
or V
the coefficients on X
The number of successes
The number of trials
The shape parameter for the gamma distribution