distributions.Rd
Statistical Distributions
dmvnorm(
x,
mu = NULL,
Q,
detQ = determinant(Q, logarithm = TRUE)$modulus,
log = TRUE
)
dmvlnorm(
x,
mu = NULL,
Q,
detQ = determinant(Q, logarithm = TRUE)$modulus,
log = TRUE
)
dmvnorm_diff(x, y, mu, Q, b, log = TRUE, byrow = FALSE)
dmvlnorm_diff(x, y, mu, Q, log = TRUE, byrow = FALSE)
dnorm_diff(x, y, mu, tau, log = TRUE, byrow = FALSE)
dlnorm_diff(x, y, mu, tau, log = TRUE, byrow = FALSE)
dmatnorm(
x,
mu = NULL,
V,
U = NULL,
detV = determinant(V, logarithm = TRUE)$modulus,
detU = determinant(U, logarithm = TRUE)$modulus,
log = TRUE
)
dmatnorm_diff(x, y, mu, V, U = NULL, log = TRUE)
dlogitnorm(x, mu, sd, log = FALSE)
rdirich(n, alpha)
rdlnorm(n, meanlog = 0, sdlog = 1)
ddlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
pdlnorm(x, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rtruncexp(n, rate = 1, a = 0, b = Inf)
dtruncexp(x, rate = 1, a = 0, b = Inf, log = FALSE)
ptruncexp(q, rate = 1, a = 0, b = Inf, lower.tail = TRUE, log.p = FALSE)
qtruncexp(p, rate = 1, a = 0, b = Inf)
vector of quantiles
the mean. The default (NULL
)- is the same as an appropriately-dimensioned
vector/matrix of all zeros, but a little faster.
Pre-computed log-determinants
Should the log-density be returned?
Bounds for the truncated exponential distribution or the multivariate normal canonical representation parameter.
Should the densities be summed (FALSE, the default) or returned separately by row (TRUE).
the precision (matrix)
the precision matrices for the matrix-normal distribution
the standard deviation
Number of deviates to produce.
the Dirichlet parameter vector or matrix.
the parameters of the underlying log-normal distribution.
Should lower tail probabilities be returned (default) or upper?
Should the log be returned?
the Exponential rate parameter. If zero, a normal distribution is used instead. If negative,
the problem is flipped and calculated using -rate
.
Bounds for the truncated exponential distribution.
A quantile
A probability
dmvnorm_diff(x, y, mu, Q)
is equivalent to (but usually twice as fast as)
dmvnorm(x, mu, Q) - dmvnorm(y, mu, Q)
. Likewise dmatnorm_diff
.