Summarize an elo Object

# S3 method for elo.run
summary(object, ...)

# S3 method for elo.glm
summary(object, ...)

# S3 method for elo.markovchain
summary(object, ...)

# S3 method for elo.colley
summary(object, ...)

# S3 method for elo.winpct
summary(object, ...)

Arguments

object

An object to summarize.

...

Other arguments

Value

A summary of object.

See also

Examples

summary(elo.run(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,
  data = tournament, k = 20))
#> 
#> An object of class 'summary.elo.run', containing information on 8 teams and 56 matches.
#> 
#> Mean Square Error: 0.2195
#> AUC: 0.6304
#> Favored Teams vs. Actual Wins: 
#>        Actual
#> Favored  0 0.5  1
#>   TRUE   6   1 16
#>   (tie)  2   1  9
#>   FALSE  8   3 10
summary(elo.glm(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,
  data = tournament))
#> Warning: non-integer #successes in a binomial glm!
#> 
#> Call:
#> stats::glm(formula = wins.A ~ . - 1, family = family, data = dat.qr, 
#>     weights = wts, subset = NULL, na.action = stats::na.pass)
#> 
#> Deviance Residuals: 
#>     Min       1Q   Median       3Q      Max  
#> -1.9887  -0.7133   0.4083   0.6533   2.0595  
#> 
#> Coefficients:
#>                         Estimate Std. Error z value Pr(>|z|)   
#> home.field                0.9643     0.3564   2.706  0.00681 **
#> `Athletic Armadillos`     1.4280     0.8969   1.592  0.11135   
#> `Blundering Baboons`     -0.8949     0.8666  -1.033  0.30177   
#> `Cunning Cats`            0.5132     0.8336   0.616  0.53813   
#> `Defense-less Dogs`      -1.5293     0.9410  -1.625  0.10411   
#> `Elegant Emus`            0.3414     0.8292   0.412  0.68050   
#> `Fabulous Frogs`          0.8640     0.8498   1.017  0.30930   
#> `Gallivanting Gorillas`   0.5132     0.8336   0.616  0.53813   
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> (Dispersion parameter for binomial family taken to be 1)
#> 
#>     Null deviance: 70.701  on 56  degrees of freedom
#> Residual deviance: 48.842  on 48  degrees of freedom
#> AIC: 72.953
#> 
#> Number of Fisher Scoring iterations: 5
#> 
#> Mean Square Error: 0.1453
#> AUC: 0.8411
#> Favored Teams vs. Actual Wins: 
#>        Actual
#> Favored  0 0.5  1
#>   TRUE   7   4 32
#>   (tie)  0   0  0
#>   FALSE  9   1  3
mc <- elo.markovchain(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,
  data = tournament, subset = points.Home != points.Visitor, k = 0.7)
summary(mc)
#> 
#> An object of class 'elo.markovchain', containing information on 8 teams and 51 matches.
#> 
#> Mean Square Error: 0.1688
#> AUC: 0.8
#> Favored Teams vs. Actual Wins: 
#>        Actual
#> Favored  0  1
#>   TRUE  10 29
#>   (tie)  0  0
#>   FALSE  6  6
co <- elo.colley(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,
  data = tournament, subset = points.Home != points.Visitor)
summary(co)
#> 
#> An object of class 'elo.colley', containing information on 8 teams and 51 matches.
#> 
#> Mean Square Error: 0.1565
#> AUC: 0.8339
#> Favored Teams vs. Actual Wins: 
#>        Actual
#> Favored  0  1
#>   TRUE   7 32
#>   (tie)  0  0
#>   FALSE  9  3
wp <- elo.winpct(score(points.Home, points.Visitor) ~ team.Home + team.Visitor,
  data = tournament, subset = points.Home != points.Visitor, k = 0.7)
summary(wp)
#> 
#> An object of class 'elo.winpct', containing information on 8 teams and 51 matches.
#> 
#> Mean Square Error: 0.1566
#> AUC: 0.8339
#> Favored Teams vs. Actual Wins: 
#>        Actual
#> Favored  0  1
#>   TRUE   7 32
#>   (tie)  0  0
#>   FALSE  9  3